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Two approaches toward the arrow of time for scattering processes have been proposed in
rigged Hilbert space quantum mechanics. One, due to Arno Bohm, involves preparations
and registrations in laboratory operations and results in two semigroups oriented in the
forward direction of time. The other, employed by the Brussels-Austin group, is more
general, involving excitations and de-excitations of systems, and apparently results in
two semigroups oriented in opposite directions of time. It turns out that these two time
arrows can be related to each other via Wigner’s extensions of the spacetime symmetry
group. Furthermore, their are subtle differences in causality as well as the possibilities
for the existence and creation of time-reversed states depending on which time arrow
is chosen.

1. INTRODUCTION

In the standard formulation of nonrelativistic quantum mechanics, the time
evolution of systems is governed by a one-parameter group of unitary operators

U (t) = e−iHt (1)

on a Hilbert space (HS) (von Neumann, 1955/1932), where H represents the
Hamiltonian and Planck’s constant has been set to one. Any evolution governed
by (1) is time-reversal invariant3 and irreversibility4 usually enters in due to an
extrinsic act of measurement or other interaction with an environment (Wheeler
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3 Time-reversal invariance means that if φ(t) is a solution of the quantum mechanical equations of
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4 A process is reversible if the temporal succession of its states φ1, φ2, . . ., φn can occur as well as the
reverse sequence of states φT

n , φT
n−1, . . ., φT

1 , where T is a time-reversal operation; otherwise it is
irreversible.
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and Zurek, 1988; Zeh, 1999). This approach, however, has some undesirable fea-
tures: (1) the observed exponential decay in various quantum experiments is con-
sidered as being only approximately exponential; (2) no appropriate eigenvectors
describing decaying states (e.g., Gamow vectors and Dirac states) are elements of
HS; (3) there is a tendency to treat metastable states such as resonances or decay-
ing states as transients rather than as states of autonomous microphysical systems;
(4) no intrinsic forms of irreversibility—where irreversible behavior originates in
the dynamics of a physical system without explicit reference to an environment
(Atmanspacher et al., 2002)—can be appropriately modeled nor can appropri-
ate initial conditions for such irreversible processes be formulated rigorously
in HS.

For these, among other reasons (Bishop, forthcoming; Bohm, 1967; Bohm
et al., 1997), theories of rigged Hilbert space (RHS) quantum mechanics—a
generalization of the HS version—were developed (Antoniou and Prigogine, 1993;
Bohm, 1967, 1978). A RHS, or Gel’fand triplet (Gel’fand and Shilov, 1967;
Gel’fand and Vilenkin, 1964), is the triple of spaces

� ⊂ H ⊂ �×, (2)

where H is a HS with the standard norm topology, τH, � is a vector space with
a topology, τ�, stronger than τH and �× is the dual space of continuous linear
functionals on �. A RHS provides an appropriate setting for studying intrinsically
irreversible processes because it naturally accommodates semigroup evolutions
and the initial and boundary conditions appropriate to such evolutions (Bohm
et al., 1997).

In the context of scattering theory, two arrows of time intrinsic to the dynamics
of quantum systems have been proposed within RHS quantum mechanics. One,
due to Bohm (Bohm and Gadella, 1989; Bohm et al., 1997), involves preparations
and registrations in laboratory operations, resulting in semigroups oriented in the
forward direction of time. The other, originally proposed by George (1971) and
employed by the Brussels–Austin group, is more general involving excitations and
de-excitations of systems, resulting in semigroups apparently oriented in opposite
directions of time. I will briefly review these two quantum arrows of time and then
examine their relationship under time-reversal.

2. STATES AND OBSERVABLES

A typical scattering experiment consists of an accelerator, which prepares
a projectile in a particular state, a target and detectors. The total Hamiltonian
modeling the interaction of the particle with the target is, therefore, H = Ho +
V , where Ho represents the free particle Hamiltonian and V the potential in
the interaction region. The vectors representing growing and decaying states are
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associated with the resonance poles of the analytically continued S-matrix (Lax
and Phillips, 1967).

The preparation/registration arrow of time (Bohm et al., 1997) is fundamental
to Bohm’s analysis of resonance states. The key intuition behind this arrow is that
no observable properties of a state can be measured unless the state has first
been prepared. Following Ludwig (Bohm et al., 1997; Ludwig, 1983, 1985), an
in-state of a particular quantum system (considered as an ensemble of individual
systems such as elementary particles) is prepared by a preparation apparatus
(considered macrophysical). The detector (considered classical) registers so-called
out-states of post-interaction particles. In-states are taken to be elements φ ∈ �−
and observables are taken to be elements ψ ∈ �+. (Decaying states, such as the
Dirac, Lippman, Schwinger kets and Gamow vectors, are elements of �×

±). This
leads to a distinction between prepared states and observables, each described by
a separate RHS (Bohm et al., 1997):

�− ⊂ H ⊂ �×
− (3a)

�+ ⊂ H ⊂ �×
+, (3b)

where �− is the Hardy space of the lower complex energy half-plane intersected
with the Schwartz class functions and �+ is the Hardy space of the upper com-
plex energy half-plane intersected with the Schwartz class functions (Bohm et al.,
1997). As Bohm and Gadella (1989) demonstrate, some elements of the general-
ized eigenstates in �×

− and �×
+ correspond to exponentially growing and decaying

states, respectively. The semigroups governing these states are5

〈φ|U×|Z∗
R〉 = e−iERt e

�
2 t 〈φ|Z∗

R〉 t ≤ 0, t : −∞ → 0 (4a)

〈ψ |U×|ZR〉 = e−iERt e− �
2 t 〈ψ |ZR〉 t ≥ 0, t : 0 → ∞, (4b)

where ER represents the total resonance energy, � represents the resonance width,
ZR represents the pole at ER − i�

2 , Z∗
R represents the pole at ER + i�

2 , |Z∗
R〉 ∈ �×

−
represents a growing Gamow vector and |ZR〉 ∈ �×

+ represents a decaying Gamow
vector. The t < 0 semigroup is identified as future-directed along with |Z∗

R〉 as a
forming/growing state. The t > 0 semigroup is identified as future-directed along
with |ZR〉 as a decaying state.6

5 If U (t) is a unitary operator on H and � ⊂ H ⊂ �×, then U† can be extended to �× provided
that (1) U leaves � invariant, i.e. U : � → �, and (2) U is continuous on � with respect to the
topology τ�. The operator U× denotes the extension of the HS operator U† to �× and is defined
by 〈Uφ|F 〉 = 〈φ|U×F 〉 for all φ ∈ � and F ∈ �×. When the group operator U† is extended to
�×, continuity requirements force the operators U× to be semigroups defined only on the temporal
half-domains (Bohm and Gadella, 1989).

6 Note that the eigenvectors plus the semigroup property are insufficient to determine the temporal
direction of evolution. These identifications involve further physical justification.
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In their discussion of scattering and resonance phenomena, Antoniou and
Prigogine also apply the RHS framework, using the Hardy class functions as a
natural function space for their analysis (Antoniou and Prigogine, 1993). Antoniou
and Prigogine adopt a time arrow somewhat different from Bohm (Bishop, forth-
coming): excitations are interpreted as events taking place before t = 0 while
de-excitations are interpreted as events taking place after t = 0. This time arrow
leads to a natural splitting of the RHS: excitations (e.g., formation of unstable
states) are considered as past-oriented and are associated with φ+ ∈ �×

+ in the up-
per half-plane, while de-excitations (e.g., decay of ustable states) are considered
as future-oriented and are associated with φ− ∈ �×

− in the lower half-plane.7 The
semigroups governing decaying states as identified by the Brussels–Austin group
are

〈φ+|U×|Z∗
R〉 = eiERt e

�
2 t 〈φ+|Z∗

R〉 t < 0, t : −∞ ← 0 (5a)

〈φ−|U×|ZR〉 = e−iERt e− �
2 t 〈φ−|ZR〉 t > 0, t : 0 → ∞. (5b)

The Brussels–Austin Group identifies the t < 0 semigroup as evolving states into
the past along with |Z∗

R〉 as decaying states, and the t > 0 semigroup as evolving
states into the future along with |ZR〉 as decaying states.

3. TIME-REVERSAL

Following Wigner (1964), the time-reversal operator, R(t), is the HS repre-
sentation of the physical spacetime transformation

R : (�x, t) → (�x,−t). (6)

Therefore, R is an element of a co-representation of the extended Galilei symmetry
group (Cariñena and Santander, 1981) for nonrelativistic spacetime (extended
Poincaré group for relativistic spacetime). These representations must be unitary
and linear except for R, which is antilinear. With these properties, R fulfils

RPiR
−1 = −Pi (7a)

RJiR
−1 = −Ji (7b)

RKiR
−1 = Ki (7c)

RHR−1 = H (7d)

RSR−1 = S† = S−1, (7e)

7 Note that the roles of the upper and lower Hardy class function spaces is reversed with respect to
Bohm’s approach. This has only mathematical import. The differences in phase factors between
(4) and (5) are due to the fact that in the former, states evolve in the Schrödinger picture while
observables evolve in the Heisenberg picture, while in the latter, only the Schrödinger picture is used.
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Table I. Properties of the Spacetime Symmetry Group

εR εT � R T

(−1)2j (−1)2j 1 C C

−(−1)2j (−1)2j

(
1 0

0 −1

) (
0 C

−C 0

) (
0 C

C 0

)

(−1)2j −(−1)2j

(
1 0

0 −1

) (
0 C

C 0

) (
0 C

−C 0

)

−(−1)2j −(−1)2j

(
1 0

0 1

) (
0 C

−C 0

) (
0 C

−C 0

)

where Pi , Ji , Ki , H and S are the momentum, angular momentum, Lorentz boost,
energy and S-matrix operators, respectively (Bohm and Wickramasekara, 1997).
The relation (7e) is experimentally tested in the form of the reciprocity relation,
but it should be pointed out that (7) is formulated in terms of observables, not
states.

However, there is one more technicality to discuss before examining the
application of R to the states and observables of Section 2. Wigner originally
derived the properties of R for the spacetime symmetry group extended by time
inversions and studied the parity inversion operator � and the total inversion
operator T in combination with R (Wigner, 1964). The parity inversion operator is
unitary so its phase can be chosen such that �2 = I (the identity operator), while
T and R are both anti-unitary, so that the associative law for group multiplication
dictates that R2 = εRI and T 2 = εT I , where εR = ±1 and εT = ±1. The phase
of T can be chosen so that T = �R (where the order of application of � and
R is physically immaterial). The extension of the spacetime symmetry group is
summarized in Table I.

The index j refers to the spin of the particle being considered while C is an op-
erator whose (2j + 1)-dimensional matrix has the elements cµ,ν = (−1)j+µδµ,ν ,
where −j ≤ µ and ν ≤ j . In the first representation, where εR = εT = (−1)2j ,
there are no changes to the underlying vector space. This is the typical case dis-
cussed in quantum mechanics (and relativistic quantum field theory). The other
three representations, however, exhibit a doubling of the vector spaces. In order
to track this space doubling, let the index r = 0, 1 label the rows and columns of
the operator matrices in Table I.

4. TIME-REVERSED STATES AND OBSERVABLES

Although no quantum fields have been constructed for representations two
and three of Table I (indeed they are highly problematic), Bohm and co-workers
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have constructed models for the fourth representation by applying R to the states
and observables in (4) (Bohm, 1995; Bohm and Wickramasekara, 1997). First,
consider the growing Gamow vectors for, φr=0,× ∈ �

r=0,×
− . Applying R yields

Rφr=0,× = ψr=1,× ∈ �
r=1,×
+ . (8)

Similarly for the decaying Gamow vectors, ψr=0,× ∈ �
r=0,×
+ , applying R yields

Rψr=0,× = φr=1,× ∈ �
r=1,×
− . (9)

The transformation properties of R may be summarized as R : �
r=0,×
± → �

r=1,×
∓ .

The temporal evolution of these time-reversed vectors is also given by semigroups.
Identify r = 0 with the scattering experiment as normally carried out in the labo-
ratory and r = 1 with the time-reversed situation. Then U×(t)〈φ, r = 0|Z∗

R, r =
0〉 ∈ �

r=0,×
− , a growing Gamow vector representing a preparable state for t ≤ 0,

is transformed under R into U×(−t)〈ψ, r = 1|ZR, r = 1〉 ∈ �
r=1,×
+ , where

eiERt e− �
2 t 〈ψ, r = 1|ZR, r = 1〉 (10)

is restricted to the time domain t ≥ 0 by continuity requirements. In the case
of |Z∗

R, r = 0〉, time runs from −∞ to 0; in contrast, for |ZR, r = 1〉, time runs
from ∞ to 0, meaning that it represents a Gamow vector that increases as t de-
creases. Similarly, U×(t)〈ψ, r = 0|ZR, r = 0〉 ∈ �

r=0,×
+ , a decaying Gamow vec-

tor representing observables for t ≥ 0, is transformed under R into U×(−t)〈φ, r =
1|Z∗

R, r = 1〉 ∈ �
r=1,×
− , where

eiERt e
�
2 t 〈φ, r = 1|Z∗

R, r = 1〉 (11)

is restricted to the time domain t ≤ 0 by continuity requirements. In the case of
|ZR, r = 0〉, time runs from 0 to ∞; in contrast, for |Z∗

R, r = 1〉, time runs from
0 to −∞, meaning that it represents a Gamow vector that decays as -t increases.
These results are summarized in Table II.

The time-reversed situation in the Brussels–Austin approach have not been
discussed in the literature. Using the transformation rules as appropriate, the
temporal evolution of the time-reversed vectors can be determined. However,
notice that the eigenvectors in (5) are identified with decaying states. It can be
easily seen that (5b) is the time-reversal of (5a) under R, but the label r asso-
ciated with vector space doubling remains to be identified. If we assume that

Table II. Properties of the Bohm/Gadella Gamow Vectors Under R(t)

Growing 〈φ, r = 0|Z∗
R, r = 0〉 〈ψ, r = 1|ZR, r = 1〉

Vectors t ≤ 0, t : −∞ → 0 t ≥ 0, t : 0 ← ∞
Decaying 〈ψ, r = 0|ZR, r = 0〉 〈φ, r = 1|Z∗

R, r = 1〉
Vectors t ≥ 0, t : 0 → ∞ t ≤ 0, t : −∞ ← 0
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Table III. Properties of the Brussels–Austin Gamow Vectors Under R(t)

Growing 〈φ+, r = 0|Z∗
R, r = 0〉 〈φ−, r = 1|ZR, r = 1〉

Vectors t < 0, t : −∞ → 0 t > 0, t : 0 ← ∞
Decaying 〈φ−, r = 0|ZR, r = 0〉 〈φ+, r = 1|Z∗

R, r = 1〉
Vectors t > 0, t : 0 → ∞ t < 0, t : −∞ ← 0

the preparation/registration arrow is a special case of the excitation/de-excitation
arrow—that is, that laboratory preparations are particular types of excitations and
the detections of decaying states are particular types of de-excitations (Bishop,
forthcoming)—then (5a) can be identified with the r = 1 and (5b) with the r = 0
regimes, respectively (compare with (4b)).

What remains is to examine the eigenvectors representing growing states in
the Brussels–Austin approach. To each de-excitation in (5) there is a corresponding
excitation represented by an eigenvector in the opposite temporal half-plane. For
the r = 0 regime, a growing eigenvector of the form

eiERt e
�
2 t 〈φ+, r = 0|Z∗

R, r = 0〉, (12)

corresponds to eigenstate (5b), where (12) is restricted to the time domain t < 0 by
continuity requirements. This state is represented by a Gamow vector that grows
as −t decreases. Similarly, for the r = 1 regime, a growing eigenstate of the form

e−iERt e− �
2 t 〈φ−, r = 1|ZR, r = 1〉, (13)

corresponds to eigenvector (5a), where (13) is restricted to the time domain t > 0
by continuity requirements. This state is represented by a Gamow vector that
grows as t decreases. These results are summarized in Table III.

The Bohm and Brussels–Austin groups appear to be working with the same
eigenvectors and semigroups in their analyses of scattering. (5a) and (5b) are time-
reversed images of each other and, when paired with their corresponding growing
vectors, are easily related to those of Bohm et al. (compare Tables II and III),
which is not immediately apparent when comparing (4) and (5) without taking
time reversal and vector space doubling into account.

5. THE POSSIBILITY OF TIME-REVERSED STATES

It has been suggested that (5a) be disregarded because it is inconsistent with
observations or because of other consistency requirements such as the need for
devices to communicate (Antoniou and Prigogine, 1993; Bishop, forthcoming).
Does the consideration of time-reversed states in the light of vector space doubling
lead to new arguments for disregarding (5a)?
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5.1. Physical Considerations

Lee (1981) discusses the following problem with time-reversed quantum
states. Consider a µ̄-meson at rest with its spin sµ in the up direction. It decays as

µ̄ → e−(L) + ν̄e(R) + νµ(L), (14)

where the electron, electron anti-neutrino and µ neutrino are emitted with helicities
−1/2, 1/2 and −1/2, respectively, denoted by the letters L and R indicating the
helicities. Neglecting the electronic mass and assuming that the final momenta of
e−, ν̄e and νµ are Pe, Pν̄ and Pν , respectively, the time-reversed process would be

e−(L) + ν̄e(R) + νµ(L) → µ̄, (15)

where the initial states of e−, ν̄e and νµ have momenta −Pe, −Pν̄ and −Pν ,
respectively. If time reversal holds, then (15) should lead to a final state with µ̄

at rest. Also (15) should produce a final spin s′
µ = −sµ, but this is not generally

the case in quantum mechanics. For example, if the momenta of ν̄e and νµ are
parallel in (14), then conservation of total angular momentum in (15) requires
that s′

µ lie in the same direction as the initial electron spin, which is typically
different from that of −sµ. In the more general case, where the directions of the
momenta in (14) are arbitrary, the final spin s′

µ = −sµ in (15) is only possible
if the momentum and spin of all three leptons are simultaneously reversed in all
possible directions while maintaining the appropriate phase relations among their
wave amplitudes. The latter would require the creation of three perfectly coherent
incoming spherical waves in the midst of the many degrees of freedom involved.

Producing such a state in laboratory situations (preparation/registration ar-
row) is clearly impossible because the precision required to produce such coherent
incoming spherical waves, as well as the control over the environment it entails,
exceeds our engineering capabilities (presuming we knew how to produce such
phase-related time-reversed waves). For more general unstable quantum processes
(excitation/de-excitation arrow), it is not clear that time-reversed growing states
associated with the r = 1 regime can be ruled out so easily. Though highly improb-
able, perhaps some kinds of singular events can produce the kinds of time-reversed
processes meeting such stringent requirements.

There is a related question as to why we live in a universe where the over-
whelming proportion of processes are in the r = 0 regime (Bohm, 1995). This
would be the case if the initial explosion of the big bang singularity was a process of
type r = 0. All subsequent processes would then typically be of type r = 0 with the
possible exception of exceedingly rare, highly singular processes producing a type
r = 1 event. However, the sheer preponderance of r = 0 processes—including the
“master r = 0 process,” the cosmic arrow—implies an improbably high entropy
barrier that such rare r = 1 processes must overcome.



Quantum Time Arrows, Semigroups and Time-Reversal in Scattering 731

5.2. Causal Considerations

One might also argue against time-reversed processes by invoking a standard
formulation of the causal relation between events: causes must precede their effects
in temporal order. However, the more general form of the causal relation is that
causes must precede their effects in logical order, leaving open the possibility for
backwards-in-time causation. For the preparation–registration arrow, such causal
considerations present problems for r = 1 type processes. The preparation of states
φ is required before observables ψ can be measured because observables logically
presuppose states (Bohm, 1967; Bohm et al., 1997). The r = 1 regime appears to
contradict this causality requirement in that observables ψ are “prepared” before
states φ can be “measured.” This is to say, that R interchanges the roles of states
and observables. If observables are logically dependent on states, then one might
argue that there must be some kind of (strange) state in the r = 1 regime for t > 0
unaccounted in Table II, but the production of such states presents insurmountable
difficulties (Section 5.1).

For the more general case of the excitation/de-excitation arrow, causal con-
siderations do not necessarily rule out time-reversed states. For the r = 0 regime,
excitations φ+ lead to de-excitations φ− (e.g., by emitting some decay product
leading to de-excitation). In contrast for the r = 1 regime, the transformation
rules indicate that de-excitations φ− lead to excitations φ+, as again the roles of
the vector spaces become interchanged. That suggests the identification of (5a) as
a de-excitation into the past is not unique. If we keep this latter identification of
decay into the past, there is nothing more to be said, as there is neither a tempo-
ral nor a logical relationship specifying the order of excitation and de-excitation.
There are only the improbability considerations described above.

Even if we modify the identification as the r = 1 regime suggests, this does
not immediately lead to an argument ruling out r = 1 processes because again
the logical form of the causal relation does not foreclose the possibility that de-
excited states may become re-excited in a time reversed fashion. There are two
cases. First, the spontaneous excitation could be self-caused, but this violates the
causal relation in that all effects must have a cause. The only possibility in this case
is an uncaused event, sheer chance. Second, some process leads to the spontaneous
excitation of the de-excited state into the past. The Unruh effect, where some kinds
of ground states can be spontaneously excited even when moving through vacuum,
and pair production are possible mechanisms in quantum field theory, but these
effects are not immediately applicable if we restrict ourselves to standard quantum
mechanics.

5.3. “Weirdness” Considerations

However, it does appear that the r = 1 regime presents an interpretive diffi-
culty. Under the registration-preparation arrow, observables are now represented
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by growing eigenvectors while states are represented by decaying eigenvectors.
Under the excitation/de-excitation arrow, if one follows what the transformation
rules suggest, de-excitations are represented by growing eigenvectors while exci-
tations are represented by decaying eigenvectors. These associations are clearly
not as natural as those in the r = 0 regime, perhaps suggesting some as yet undis-
covered problems with the fourth representation of Table I.

6. DISCUSSION

It appears that the time-reversal invariance of the dynamics in conventional
quantum mechanics is due to the underlying symmetries of the HS in which it
is formulated. This time-reversal symmetry is missing from the RHS generaliza-
tion for the case of resonance phenomena. Nevertheless, it may be possible to
restore some form of time-reversal symmetry in RHS quantum mechanics via
the extended spacetime symmetry group. For the registration/preparation arrow,
while the formalism allows states (and observables) to be distinguished from their
time-reversed counterparts, such counterparts are not physically possible. For the
more general excitation/de-excitation arrow, time-reversed counterparts may also
be distinguished, but appear to be only highly improbable.

However, there is something weird about the fourth extended spacetime rep-
resentation and the rareness of r = 1 processes may be related to this weirdness.
If there turns out to be a serious problem with this representation (e.g., a problem-
atic unexamined assumption) such that it must be discarded, then time-reversed
states would disappear from RHS quantum mechanics in the context of resonance
phenomena as unphysical, leaving a purely time-asymmetric theory.
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